

Difluoro Complexes of Platinum(II) and -(IV) with Monodentate Phosphine Ligands: An Exceptional Stability of d⁶ Octahedral Organometallic Fluorides

Anette Yahav, Israel Goldberg, and Arkadi Vigalok*

School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Received August 26, 2004

Complexes $(R_3P)_2PtF_2$ were prepared by reaction of the corresponding diiodo precursors with AgF in dichloromethane. The intermediate formation of *trans*- and *cis*- $(R_3P)_2Pt(I)F$ was also observed. All fluoro complexes demonstrate a strong preference for the cis-configuration (R = Ph or Et) unless a bulky phosphine ligand is used (R = i-Pr), in which case the trans complex was observed. The Pt(IV) difluoro compounds $(R_3P)_2Ar_2PtF_2$ were obtained by reacting the Pt(II) diaryl precursors with XeF₂. The fluoro ligands are located in the trans-position relative to the aryl groups in the overall octahedral environment. The representative Pt(II) and Pt(IV) difluoro complexes were characterized by X-ray crystallography. All fluoro compounds react rapidly with chlorotrimethylsilane to give the corresponding chloro complexes. The Pt(IV) difluorides are remarkably stable in the C–C reductive elimination reaction, relative to their dichloro analogs which reductively eliminate diaryl within several hours at 45 °C in *N*-methylpyrrolidone. It was found that phosphine dissociation from the octahedral Pt(IV) complex is essential for the reductive elimination reaction to take place, the difluoro complex being kinetically stable even at 60 °C.

Introduction

Palladium and platinum phosphine complexes are of great interest to organometallic chemistry and catalysis.¹ Many important textbook examples of oxidative addition, reductive elimination, and ligand exchange reactions have been performed on such complexes.² In most of these transformations the participation of a metal halide complex is involved, with chloride, bromide, or iodide being the natural ligands of choice. In contrast, little is known about palladium and platinum phosphine complexes containing a fluoro ligand.^{3–5} Only recently did adequately characterized fluoro complexes, which show high reactivity in nucleophilic substitution

10.1021/ic0488177 CCC: \$30.25 © 2005 American Chemical Society Published on Web 02/03/2005

reactions, start to appear in the literature.^{6,7} Still, palladium and platinum phosphine complexes with more than one fluoro ligand were believed to be too unstable to be isolated in their pure form.^{6a,8} The reasons for the limited stability of late transition metal complexes with the fluoride ligand

- (6) (a) Fraser, S. L.; Antipin, M. Y.; Khroustalyov, V. N.; Grushin, V. V. J. Am. Chem. Soc. **1997**, 119, 4769. (b) Pilon, M. C.; Grushin, V. V. Organometallics **1998**, 17, 1774. (c) Marshall, W. J.; Thorn, D. L.; Grushin, V. V. Organometallics **1998**, 17, 5427.
- (7) Several Pt(II) monofluoride complexes have been reported; see for example: (a) Nilsson, P.; Plamper, F.; Wendt, O. F. Organometallics 2003, 22, 5235. (b) Clark, H. C. S.; Fawcett, J.; Holloway, J. H.; Hope, E. G.; Peck, L. A.; Russel, D. R. J. Chem. Soc., Dalton Trans. 1998, 1249. (c) Coulson, D. R. J. Am. Chem. Soc. 1976, 98, 3111. (d) Bernhardt, P. V.; Gallego, C.; Martinez, M.; Parella, T. Inorg. Chem. 2002, 41, 1747. (e) Doherty, N. M.; Critchlow, S. C. J. Am. Chem. Soc. 1987, 109, 7906. (f) Cairns, M. A.; Dixon, K. R.; McFarland, J. J. J. Chem. Soc., Dalton Trans. 1975, 1159. (g) Russell, D. R.; Mazid, M. A. J. Chem. Soc., Dalton Trans. 1980, 1737.
- (8) (a) Mason, M. R.; Verkade, J. G. Organometallics 1992, 11, 2212.
 (b) Organometallics 1990, 9, 864. (c) Grushin, V. V. Organometallics 2000, 19, 1888.

Inorganic Chemistry, Vol. 44, No. 5, 2005 1547

^{*} Author to whom correspondence should be addressed. E-mail: avigal@ post.tau.ac.il. Tel.: 972-3-640 8617. Fax: 972-3-640 6205.

 ⁽a) Tsuji, J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis; John Wiley & Sons: New York, 1997. (b) Strukul, G. Top. Catal. 2002, 19, 33. (c) Clarke, M. L. Polyhedron 2001, 20, 151.

^{(2) (}a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Sausalito, CA, 1987. (b) Atwood, J. D. Inorganic and Organometallic Reaction Mechanisms, 2nd ed.; VCH Publishers: New York, 1997.

⁽³⁾ For general reviews, see: (a) Grushin, V. V. Chem.-Eur. J. 2002, 8, 1007. (b) Murphy, E. F.; Murugavel, R.; Roesky, H. W. Chem. Rev. 1997, 97, 3425. (c) Doherty, N. M.; Hoffman, N. W. Chem. Rev. 1991, 91, 553.

⁽⁴⁾ For reviews on C-F bond activation, see: (a) Burdeniuc, J.; Jedlicka, B.; Crabtree, R. H. *Chem. Ber./Recueil* **1997**, *130*, 145. (b) Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. *Chem. Rev.* **1994**, *94*, 373. (c) See also: Braun, T.; Perutz, R. N. *Chem. Commun.* **2002**, 2749 and references therein.

⁽⁵⁾ For reviews on fluoro complexes in catalysis, see: (a) Fagnou, K.; Lautens, M. Angew. Chem., Int. Ed. 2002, 41, 26. (b) Pagenkopf, B. L.; Carreira, E. M. Chem.—Eur. J. 1999, 5, 3437.
(6) (a) Fraser, S. L.; Antipin, M. Y.; Khroustalyov, V. N.; Grushin, V. V.

are hard to evaluate conclusively, and it is often attributed to incompatibility of a "soft" transition metal acid with a very "hard" fluoride base.^{3,9} Recently, Mezzetti and coworkers revisited the "hardening" the metal center, via either coordinative unsaturation or electrostatic interactions, as an essential requirement for metal–fluoride stabilization.¹⁰ Unfavorable $p\pi$ – $d\pi$ four electron repulsions may also be operative in late transition metal fluoro complexes.^{11,12} The π -donation properties of the fluoride ion are strongest among the halide ligands, a notion supported by CO IR frequency analysis.¹³ Due to the relative shortage of the late transition metal fluoro complexes, the experimental and theoretical comparative studies were often performed on different metal systems, which varied in the number and types of ligands, and their coordination geometries.^{10,11}

We recently reported the first palladium(II) and platinum-(II) complexes of the formula L_2MF_2 , where L_2 is a cischelating diphosphine ligand (eq 1).¹⁴ We hereby present the extension of our studies toward the synthesis and comparative reactivity of a series of Pt(II) and Pt(IV) difluoro complexes with *monodentate* phosphine ligands. Our results indicate that such complexes may be more common than previously believed and that the fluoro ligand can have a stabilizing effect on its metal complexes.

$$L_2M(R)_2 + XeF_2 \xrightarrow{CH_2Cl_2, -30^{\circ} - RT} - Xe, -R-R$$

$$\boxed{L_2MF_2} \xrightarrow{CH_2Cl_2, RT} - 2 AgI \qquad L_2MI_2 + 2 AgF \quad (1)$$

M= Pd, Pt; L₂= *cis*-chelating diphosphine ligand

Results and Discussion

1. Synthesis and Reactivity of Platinum(II) Difluoro Complexes. While palladium(II) and, especially, platinum-(II) square planar complexes of the formula $(R_3P)_2MX_2$ (X = Cl, Br, I) have been extensively studied to evaluate kinetic and thermodynamic parameters of ligand exchange processes,¹⁵ similar studies on fluorides have been hindered by the instability of such complexes. Several claims to have made the difluoro platinum complexes bearing phosphine ligands did not provide definitive characterization of the resulting products.¹⁶ Only recently were the first fully

- (10) Becker, C.; Kieltsch, I.; Broggini, D.; Mezzetti, A. *Inorg. Chem.* 2003, 42, 8417.
- (11) Caulton, K. G. New J. Chem. 1994, 18, 25.
- (12) Meyer, J. M. Comments Inorg. Chem. 1988, 8, 125.
- (13) Poulton, J. T.; Sigalas, M. P.; Folting, K.; Streib, W. E.; Eisenstein, O.; Caulton, K. G. *Inorg. Chem.* **1994**, *33*, 1476.
- (14) Yahav, A.; Goldberg, I.; Vigalok, A. J. Am. Chem. Soc. 2003, 125, 13634.
- (15) (a) Basolo, F.; Chatt, J.; Gray, H. B.; Pearson, R. G.; Shaw, B. L. J. Chem. Soc. 1961, 2207. (b) Cooper, D. G.; Powell, J. J. Am. Chem. Soc. 1973, 95, 1102. (c) Verstuyft, A. W.; Nelson, J. H. Inorg. Chem. 1975, 14, 1501. (d) Anderson, G. K.; Cross, R. J. Chem. Soc. Rev. 1980, 185.
- (16) (a) McAvoy, J.; Moss, K. C.; Sharp, D. W. A. J. Chem. Soc. 1965, 1376. (b) Kemmitt, R. D. W.; Peacock, R. D.; Stocks, J. J. Chem. Soc. A 1971, 846. (c) Bland, W. J.; Kemmitt R. D. W. J. Chem. Soc. A 1969, 2062. (d) Thomson, J.; Fzea, A. H.; Lobban, J.; McGivern, P.; Cairns, J. A.; Fitzgerald, A. G.; Berry, G. J.; Davidson, M. R.; Fan, Y. C. MRS Symp. Proc. 1999, 546, 225.

characterized $(R_3P)_2MF_2$ (M = Pd, Pt) complexes reported by us.¹⁴ While the analogous palladium(II) complexes could only be isolated with the cis-chelating tri*alkyl*phosphine ligands, the platinum complexes were also obtained with cischelating *aryl*phosphines as well as the monodentate triphenylphosphine. In the latter case, the formation of the *trans*-(Ph₃P)₂PtF₂ was mistakenly reported.¹⁴

We found that cis-(Ph₃P)₂PtF₂ (**2a**) can be readily prepared by reacting $(Ph_3P)_2PtI_2$ (1a) with 3 equiv of AgF in CH_2Cl_2 for 3 h (Scheme 1). The ³¹P (5.03 ppm) and ¹⁹F NMR (-216.34 ppm) spectra of **2a** exhibit the characteristic AA'MXX' pattern (for the ¹⁹⁵Pt isotope) with a calculated trans- $J_{\rm PF}$ of 180.0 Hz. Performing the reaction with 1 equiv of AgF in CH₂Cl₂ showed the formation of small amounts of trans-(Ph₃P)₂Pt(I)F (**3a**) as an intermediate in the halide exchange reaction. Slowing the reaction, using benzene as a solvent, resulted in the formation of 3a as a major reaction product. The ¹⁹F NMR spectrum of **3a** showed a triplet at -310.38 ppm ($J_{PF} = 19.1$ Hz, $J_{PtF} = 543.1$ Hz), while the ³¹P NMR spectrum showed the doublet at 13.61 ppm (J_{PtP} = 2747.1 Hz). Similarly, reacting trans-(Et_3P)₂PtI₂ with 3 equiv of AgF gave the *cis*-difluoro complex **2b** (¹⁹F NMR, -225.31 ppm; AA'MXX' for the ¹⁹⁵Pt isotope), and the corresponding trans-intermediate 3b was observed during the reaction (triplet in ¹⁹F NMR spectrum at -335.20 ppm, J_{PF} = 18.6 Hz, J_{PtF} = 494.4 Hz). Upon being warmed to 45 °C, *trans*-3b underwent clean conversion to *cis*-3'b. Thus, there is a strong thermodynamic preference for the overall cisconfiguration in both mono- and difluoroplatinum(II) complexes. Interestingly, there is a dramatic difference (ca. 90 ppm) in the ¹⁹F NMR chemical shifts upon moving from the *trans*-3b to *cis*-3'b, which exhibited a doublet of doublets in the ¹⁹F NMR spectrum at -248.10 ppm ($J_{\text{PtransF}} = 166.9$ Hz, $J_{PcisF} = 22.3$ Hz).¹⁷

When *trans*-(*i*-Pr₃P)₂PtI₂ was treated with an excess of AgF in CH₂Cl₂ for 3 h, the formation of *trans*-(*i*-Pr₃P)₂Pt(I)F (**3c**) was observed as the major compound. Complex **3c** showed a triplet at -329.68 ppm ($J_{PF} = 12.6$ Hz, $J_{PtF} = 520.6$ Hz) in the ¹⁹F NMR spectrum and a doublet at 31.09 ppm in the

⁽⁹⁾ Mezzetti, A.; Bekker, C. Helv. Chim. Acta 2002, 85, 2686.

⁽¹⁷⁾ For a brief discussion on ¹⁹F NMR chemical shifts in late transition metal complexes, see: Huang, D.; Koren, P. R.; Folting, K.; Davidson, E. R.; Caulton, K. G. J. Am. Chem. Soc. **2000**, *122*, 8916.

Figure 1. Selected bond distances (Å) and bond angles (deg) for a molecule of **2a**: Pt-F1 1.999(2), Pt-F2 2.016(2), Pt-P1 2.2198(9), Pt-P2 2.2304(10); F1-Pt-F2 84.81(9), F1-P-P1 91.05(7), F1-Pt-P2 169.92(7), F2-Pt-P1 175.74(7), F2-Pt-P2 85.27(7), P1-Pt-P2 98.89-(3).

Scheme 2

³¹P NMR spectrum. Prolonged treatment (2 days) with an excess of AgF did not produce pure *trans*-(*i*-Pr₃P)₂PtF₂ (**2c**) although it was obtained as the major complex as indicated by a triplet at -455.90 ppm ($J_{PF} = 11.2$ Hz, $J_{PtF} = 973.6$ Hz) in the ¹⁹F NMR spectrum and a triplet at 34.87 ppm ($J_{PtP} = 2822.4$ Hz) in the ³¹P NMR spectrum. Large amounts of decomposition products were also observed in this case.

Colorless crystals of **2a** were obtained by slow pentane diffusion into the CH₂Cl₂ solution. The platinum center is located in the square planar arrangement (Figure 1) with the angle between the two fluoro ligands (84.81(9)°) being substantially smaller than that between the two phosphine ligands (98.89(3)°), indicating steric repulsions between the latter. The Pt–F1 and Pt–F2 distances of 1.999(2) and 2.016(2) Å, respectively, are significantly shorter than in *trans*-(Ph₃P)₂Pt(Ph)F (2.117(3) Å).^{7a} The fluoro ligands are also involved in intermolecular interactions with aromatic hydrogens of the phosphine ligands (2.276 and 2.376 Å). Shorter Pt–P bond distances in **2a** (2.2198(9) and 2.2304-(10) Å) compared with those in *cis*-(Ph₃P)₂PtCl₂ (2.251(2) and 2.265(2) Å)¹⁸ provide evidence of the weak transinfluence of the fluoride.

Complexes **2a,b** reacted rapidly with 2 equiv of chloro-(trimethyl)silane (Me₃SiCl) to give Me₃SiF and the *cis*dichloro complexes **4a,b** (Scheme 3). When less than 2 equiv of the organic chloride was used, a mixture of **2**, **4**, and the monosubstituted complex *cis*-(R₃P)₂Pt(Cl)F (**5a,b**) was formed

(18) Anderson, G. K.; Clark, H. C.; Davies, J. A.; Ferguson, G.; Parvez, M. J. Crystallogr. Spectrosc. Res. 1982, 12, 449.

(Scheme 2). Complexes **5** show first-order patterns in their ¹⁹F and ³¹P NMR spectra (Experimental Section), in agreement with the proposed cis-orientation of the two phosphine ligands. Similarly, reacting **2** with <2 equiv of Me₃SiI gave a mixture of unreacted **2**, *cis*-diodo complexes **1**, and the monosubstituted complex *cis*- (R₃P)₂Pt(I)F (**3'a,b**). Thus, the reactivity of the Pt(II) difluoro complexes **2** is similar to that observed for the Pd(II) and Pt(II) monofluoro complexes, which rapidly fluorinate strongly electrophilic organic reagents.^{6,7}

2. Synthesis and Reactivity of the Platinum(IV) Difluoro Complexes. A Pt(IV) difluoro complex was previously observed with only pyridine ligands, and no corresponding phosphine complexes were reported.¹⁹ We prepared the bis-(triphenylphosphine)platinum(IV) difluoro complex 7a by reacting the diphenylplatinum(II) precursor (6a) with XeF₂ in CH₂Cl₂ (Scheme 3).²⁰ This reaction was previously reported to produce the trans-(Ph₃P)₂PtF₂.¹⁴ The assignment was based on the ³¹P and ¹⁹F NMR spectra, which showed the expected pattern of two phosphine and two fluoro ligands being symmetrical and in the mutual cis-arrangement. While formation of biphenyl and the corresponding $cis-(R_3P)_2PtF_2$ complexes was observed with cis-chelating diphosphine ligands (eq 1), only trace amounts of carbon-carbon reductive elimination products were obtained in the reaction of **6a** with XeF₂. As monitoring the formation of biphenyl by ¹H NMR was obscured by triphenylphosphine aromatic signals, we also prepared the *para*-fluorophenyl analogs **6b** and 7b, which would show the characteristic singlet in the 19 F NMR spectrum at -115.8 ppm if the formation of 4,4'difluorobiphenyl occurred during the reaction.

The ¹⁹F NMR spectrum of **7b** shows a broad singlet at -255.22 ppm, which resolves into a triplet ($J_{PtF} = 122.3$ Hz) in *N*-methylpyrrolidinone (NMP). Complex **7b** also shows a singlet at -119.83 ppm due to the *para*-fluoro substituent. The ³¹P NMR spectrum of **7b** exhibits a triplet at 8.32 ppm with Pt-P satellite signals of 2070.4 Hz. Similar to the triphenylphosphine complexes, the corresponding Pt-(IV) complexes **7c,d**, containing the trialkylphosphine ligands (Et₃P and *i*-Pr₃P), were also prepared using the same procedure (Scheme 1). Complex **7c** shows a triplet in the ³¹P NMR spectrum at 7.03 ppm ($J_{FP} = 21.5$ Hz, $J_{PtP} = 1877.7$

⁽¹⁹⁾ Drews, H.-H.; Preetz, W. Z. Anorg. Allg. Chem. 1997, 623, 509.

⁽²⁰⁾ For use of XeF₂ in synthesis of metal fluoro complexes, see: (a) Cockman, R. W.; Ebsworth, E. A. V.; Holloway, J. H.; Murdoch, H.; Robertson, N.; Watson, P. G. In *Fluorine Chemistry (Toward the 21st Century)*; Thrasher, J. S., Strauss, S. H., Eds.; American Chemical Society: Washington, DC, 1994; Chapter 20, p 327. (b) Holloway, J. H.; Hope, E. G. *J. Fluorine Chem.* **1996**, *76*, 209.

Figure 2. Selected bond distances (Å) and bond angles (deg) for a molecule of **7a**: Pt-F1 2.0892(14), Pt-C1 2.039(2), Pt-P1 2.3846(6); C1-Pt-C1' 95.30(14), C1-Pt-F1 86.56(9), C1-Pt-F1' 176.94(7), F1-Pt-F1' 91.70(8), P1-Pt-P1' 171.45(3).

Hz) and a triplet in the ¹⁹F NMR spectrum at -270.89 ppm ($J_{PtF} = 104.3$ Hz) in NMP. In the case of **7d** the resulting complex could not be purified due to its high solubility in hexane.

Crystals of 7a, suitable for single-crystal X-ray analysis, were obtained by slow evaporation of its CH₂Cl₂ solution. The crystal structure of 7a (Figure 2) shows the platinum atom in a distorted octahedral environment, with the phosphine ligands tilted toward the fluorides (P1-Pt-P1' = $171.45(3)^{\circ}$). The platinum fluoride distances of 2.0892(14)Å are slightly shorter than those in *trans*-(Ph₃P)₂Pt(Ph)F (2.117(3) Å),^{7a} while the Pt1-C1 distance of 2.039(2) Å is longer than that in the Pt(II) case (1.978(5) Å). The Pt-F1 distance in 7a also correlates well with Pt-F distances in Pt(II) complexes that have the fluoro ligand trans to the phosphine (2.043(7) and 2.03(1) Å in $(Et_3P)_3PtF^+$ and *cis*-(Ph₃P)₂Pt(CH(CF₃)₂)F, respectively).^{7f,21} It is, however, significantly longer than the Pt-F bonds in the *trans*-(py)₄PtF₂²⁺ complex (1.938(10) and 1.943(10) Å).¹⁹ The C1-Pt-C1' angle of 95.30(14)° is larger than C1-Pt-F1 (86.56(9)°) as a result of steric repulsions between the bulkier phenyl groups. These repulsions are further evident in the significant deviation (30.91°) of the two phenyl ligands from the equatorial plane.²² There is a strong interaction between the fluoro ligands and one of the aromatic protons of each Ph₃P, manifested in the very short nonbonding distance of 2.059 Å.²³ The intramolecular and intermolecular nonbonding interactions between one of the aromatic hydrogens of the phenyl substituent and the fluoro ligands (2.491 and 2.367 Å, respectively) are also worth noting.

Reacting complexes 7a-c with 2 equiv of Me₃SiCl resulted in the rapid formation of Me₃SiF and the Pt(IV)

dichloro complexes 8a-c (Scheme 4). Replacement of the fluoro ligand in 7b with the chloride results in the upfield shift of the aromatic fluoro signal in the ¹⁹F NMR spectrum, which appears at -121.03 ppm in **8b**. It also results in the decrease in J_{PtP} by ca. 100 Hz in the ³¹P NMR spectruman indication of lower electron density at the metal center.24 Similar to 2, addition of less than 2 equiv of Me₃SiCl in CH₂Cl₂ or NMP gave a mixture of 7, 8, and the monosubstituted complex 9 (Scheme 4). Complexes 7 reacted with Me₃SiCl at significantly slower rates than complexes 2. When a 10:1 mixture of 7b and 2a was treated with 1 equiv of Me₃SiCl (per 2a), only 5a was observed in the ¹⁹F NMR spectrum along with the unreacted 2a and 7b. Formation of 5a was also noted in the ³¹P NMR spectrum. However, reaction of an NMP solution of 7b with 2 equiv of Me₃SiOTf resulted in the monosubstituted complex 10b as the only product (Scheme 5).

This compound could be isolated by performing the reaction in a toluene-NMP (9:1) mixture followed by the precipitation of 10b with hexane. No formation of the disubstituted product was observed, even when an excess (3-5 equiv) of Me₃SiOTf was used. The ¹⁹F NMR spectrum of **10b** showed a triplet at $-274.52 \text{ ppm} (J_{\text{PtF}} = 97.0 \text{ Hz})$ and two singlets, due to inequivalent fluorine atoms of the aromatic ligands, at 118.70 and 118.04 ppm. The ³¹P NMR spectrum of 10b exhibited a doublet at 4.27 ppm. The reaction with Me₃SiOTf is solvent dependent. A different reactivity pattern was observed in CH₂Cl₂, where substitution of both fluoro ligands occurs rapidly to give 2 equiv of Me₃SiF and the ditriflate complex. The latter could not be isolated at room temperature, and a number of decomposition products were observed. While the polarity of CH₂Cl₂ is significantly lower than that of NMP ($\epsilon = 9$ vs 32.5, respectively),²⁵ it is inclined to form hydrogen bonds with the coordinated fluoride.²⁶ Thus, it is possible that, in a CH₂Cl₂ solution, formation of hydrogen bonds might be responsible for the higher lability and reactivity of the fluoro

(25) Abboud, J.-L. M.; Notario, R. Pure Appl. Chem. 1999, 71, 645.

⁽²¹⁾ Howard, J.; Woodward, P. J. Chem. Soc., Dalton Trans. 1973, 1840.
(22) Flemming, J. P.; Pilon, M. C.; Borbulevitch, O. Y.; Antipin, M. Y.; Grushin, V. V. Inorg. Chim. Acta 1998, 280, 87.

⁽²³⁾ Barthazy, P.; Stoop, R. M.; Worle, M.; Togni, A.; Mezzetti, A. Organometallics 2000, 19, 2844.

^{(24) (}a) Cobley, C. J.; Pringle, P. G. Inorg. Chim. Acta 1997, 265, 107.
(b) Mather, G. G.; Rapsey, G. J. N.; Pidcock, A. Inorg. Nucl. Chem. Lett. 1973, 9, 567.

⁽²⁶⁾ Grushin, V. V.; Marshall, W. J. Angew. Chem., Int. Ed. 2002, 41, 4476.

Scheme 6

ligand compared with that in an NMP solution. This notion is supported by the broadening of the ¹⁹F NMR signals in **7** in CH₂Cl₂ vs NMP. The addition of a 5–10-fold excess of methanol to solutions of **7b**,**c** in NMP caused no changes in their ¹⁹F and ³¹P NMR spectra over the period of 1 day.

While complex 7b was stable when heated at 60 °C in NMP overnight, complex 8b underwent a rapid reductive elimination to give 4 and 4,4'-difluorobiphenyl quantitatively within 5 h at 45 °C (Scheme 6). The formation of the latter was confirmed by ¹⁹F NMR spectroscopy, EI-MS, and an authentic sample. The Pt(IV) Et₃P complexes were significantly more stable toward the reductive elimination, with both 2c and 8c unchanged after 12 h at 80 °C. Interestingly, 10b is less reactive toward the C-C reductive elimination than 8b, even though the platinum center is less electron rich and a highly labile ligand (OTf⁻) is present.²⁷ The C-C reductive elimination from a Pt(IV) center is generally preceded by ligand dissociation²⁸ and, thus, could greatly benefit from the presence of a labile ligand, such as triflate.^{29,30} Therefore, the presence of a single fluoro ligand in 10b is sufficient to overcome both the electronic and (anionic) ligand lability factors (when compared with 8b) that generally strongly facilitate the reductive elimination processes. When a 10-fold excess of Ph₃P was added to a solution of **8b** in NMP, very little C-C reductive elimination was observed after 5 h at 45 °C. Addition of a 10-fold excess of (p-Tolyl)₃P to a solution of 7b in NMP showed no ligand exchange at 60 °C, while complex 8b underwent a complete exchange reaction giving (p-Tolyl)₃P₂Pt(Ar)₂Cl₂ at 45 °C after 5 h (Scheme 7).

The reduced lability of the phosphine ligand in the difluoro complex **7b** can be attributed to lower electron density at the metal center bound to the most electronegative atom.

Although ligand dissociation could provide partial relief of the filled-filled $p\pi$ -d π repulsions present in the octahedral configuration,^{11,31,32} this would only happen if the resulting unsaturated complex adapted a trigonal bipyramidal configuration. In our system, phosphine dissociation would only result in a square pyramidal structure due to the presence of two fluoro ligands trans to two aryl groups.

The overall stability of the Pt(IV) fluoro complexes in comparison with the corresponding chloro analogs is a rare example of a dramatic reactivity change upon replacing one halide with another.^{33,34}

3. Summary. Platinum(II) square planar complexes (R₃P)₂-PtF₂ were prepared and fully characterized. These compounds exhibit a strong preference for the cis-geometry, unless steric hindrance (R = i-Pr) exists. We also prepared octahedral Pt(IV) difluoro complexes $(R_3P)_2Ar_2PtF_2$ with the fluoro ligands in the trans position to the aryl groups. The platinum-(II) and platinum(IV) difluoro complexes are stable at room temperature in both solution and the solid state, although they rapidly fluorinate strong organic electrophiles. Interestingly, the fluoro ligands stabilize Pt(IV) complexes which show greater stability in the C-C reductive elimination reaction than the analogous dichoro complexes. This stabilization is caused by stronger binding of the phosphine ligand in the Pt(IV) fluoro complexes, as phosphine dissociation from the octahedral complex was found to be essential for the reductive elimination process.

Experimental Section

General Methods. All operations with air- and moisture-sensitive compounds were performed in a nitrogen-filled Innovative Technology glovebox. All solvents were of reagent grade or better. Hexane, toluene, benzene, and THF were distilled over sodium/benzophenone ketyl. CH₂Cl₂ and NMP were refluxed over CaH₂ and distilled. All solvents were degassed and stored under high-purity nitrogen after distillation. All deuterated solvents (Aldrich) were stored under high-purity nitrogen on molecular sieves (3 Å). Commercially available reagents were used as received. Silver(I) fluoride and xenon difluoride were purchased from Matrix Scientific. Caution: XeF_2 is a strong oxidant and may cause a fire upon contact with combustible materials. (R₃P)₂PtAr₂ were prepared by ligand exchange with (1,5-cyclooctadiene)PtAr₂ as previously reported.³⁵ ¹H, ³¹P, ¹⁹F, and ¹³C NMR spectra were recorded on Bruker AC 200 MHz and Bruker AMX 400 MHz spectrometers. ¹H and ¹³C NMR signals are reported in ppm downfield from TMS. ¹H signals are referenced to the residual proton (7.26 ppm for CDCl₃) of a

⁽²⁷⁾ Continued heating at higher temperatures gave a number of decomposition products, which could be the result of instability of (Ph₃P)₂-PtF(OTf), formed after the reductive elimination step. See: Thorn, D. L. Organometallics **1998**, *17*, 348 and ref 7b.

⁽²⁸⁾ For proposed aryl-aryl C-C reductive elimination from a 18 electron Pt(IV) center, see: Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. 1998, 120, 2843.

^{(29) (}a) Williams, B. S.; Goldberg, K. I. J. Am. Chem. Soc. 2001, 123, 2576. (b) Crumpton, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2000, 122, 962.

⁽³⁰⁾ For general review on C-C reductive elimination, see: (a) Brown, J. M.; Cooley, N. A. Chem. Rev. 1988, 88, 1031. See also: (b) Stang, P. J.; Kowalski, M. H. J. Am. Chem. Soc. 1989, 111, 3356. (c) Puddephatt, R. J. Angew. Chem., Int. Ed. 2002, 41, 261.

^{(31) (}a) Riehl, J.-F.; Jean, Y.; Eisenstein, O.; Pelissier, M. Organometallics 1992, 11, 729. (b) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; John Wiley & Sons: New York, 1985; Chapters 15–17, p 277.

⁽³²⁾ Fluoride is the strongest π-donor among halides: (a) Smart, B. E. In *Chemistry of Organic Fluorine Compounds II*; Hudlicky, M., Pavlath, A. E., Eds.; American Chemical Society: Washington, DC, 1995; Chapter 6, p 979. (b) Hammet constants σ_p: F, 0.06; Cl, 0.23; Br, 0.23; I, 0.18. Hansch, C.; Leo, A.; Taft, R. W. *Chem. Rev.* **1991**, *91*, 165.

⁽³³⁾ Cooper, A. C.; Folting, K.; Huffman, J. C.; Caulton, K. G. Organometallics 1997, 16, 505.

⁽³⁴⁾ Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2004, 126, 3068.

^{(35) (}a) Clark, H. C.; Manzer, L. E. J. Organomet. Chem. 1973, 59, 411.
(b) Eaborn, C.; Odell, K. J.; Pidcock, A. J. Chem. Soc., Dalton Trans. 1978, 357.

Table 1. Selected ¹⁹F NMR Signals of Complexes 2–10

complex	¹⁹ F signal (ppm) ^a	$J_{\mathrm{PtF}}\left(\mathrm{Hz}\right)$	$J_{\rm PF}({\rm Hz})$
2a	-216.34	108.0^{b}	180.0^{b}
			18.0
2b	-225.31^{b}		
2c	-455.90°	973.6	11.2
3a	-310.38^{d}	543.1	19.1
3'a	-246.99^{d}	68.8	181.9
			28.6
3b	-335.20°	494.4	18.6
З'Ъ	-248.10^{d}		166.9
			22.3
3c	-329.68°	520.6	12.6
7a	-252.49	104.2^{d}	23.6
7b	-255.22	122.3^{b}	21.5
	-119.83		
7c	-270.89	104.3^{d}	21.6
	-119.71		
7d	-261.03°		17.8
	-120.74		
9b	-280.31°		19.9
	-121.93, -121.86		
9c	-281.92°		22.2
	-120.99, -120.22		
10b	-274.52^{d}	97.0	18.8
	-118.70, -118.04		
10c	-263.81^{e}	75.9	20.2
	-117.69, -116.93		

^{*a*} The signals are reported in CDCl₃, unless stated otherwise. ^{*b*} AA'MXX' system (~30%). ^{*c*} In CH₂Cl₂. ^{*d*} In NMP. ^{*e*} In C₆D₆.

deuterated solvent, and for ¹³C NMR spectra, the signal of CDCl₃ (77.00 ppm) was used as a reference. ³¹P chemical shifts are reported in ppm downfield from H₃PO₄ and referenced to an external 85% phosphoric acid sample. ¹⁹F chemical shifts are reported in ppm downfield from CClF₃ and referenced to an internal C₆F₆. Table 1 shows selected ¹⁹F NMR signals of reported compounds. All measurements were performed at 22 °C in CDCl₃ unless stated otherwise. The second-order coupling constants were deduced using the gNMR simulation program. Table 2 shows crystal structure information for complexes **2a** and **7a**. Elemental analyses were performed in the laboratory for microanalysis at the Hebrew University of Jerusalem.

Synthesis of 2. In a typical procedure, 1a or 1b (0.02 mmol) in 2 mL of CH_2Cl_2 was vigorously stirred with 8 mg (0.063 mmol) of AgF for 3 h. The suspension was filtered through a cotton pad and Celite, the filtrate was concentrated in a vacuum, and 3 mL of hexane was added. The resulting white precipitate was collected and dried in a vacuum. Yield: 90–95%. In the case of 1c, 10 equiv of AgF were used and the suspension was stirred for 2 days. After filtration, the solvent was evaporated and the product extracted with hexane (ca. 85% pure by NMR).

2a: ${}^{31}P{}^{1}H{}$ 5.03 (AA'MXX', ~30%, $J_{F(trans)P} = 180.0$ Hz, $J_{PtP} = 3966.4$ Hz, $J_{P(cis)P} = 21.0$ Hz); ${}^{19}F{}^{1}H{}$ -216.34 (A = A'MXX', $J_{PtF} = 108.0$ Hz, $J_{P(cis)F} = 18.0$ Hz, $J_{F(cis)F} = 88.0$ Hz); ${}^{1}H$ 6.92–7.49 (m, Ar-H); FAB-MS M⁺ (M⁺ calcd for C₃₆H₃₀F₂P₂Pt): m/z 757 (m/z 757). Anal. Found (calcd) for C₃₆H₃₀F₂P₂Pt: C, 56.26 (57.07); H, 4.46 (3.99).

2b: ${}^{31}P{}^{1}H{}$ 3.18 (AA'MXX', ~30%, $J_{F(trans)P} = 181.0$ Hz, $J_{PtP} = 3748.1$ Hz); ${}^{19}F{}^{1}H{}$ -225.31 (AA'MXX'); ${}^{1}H$ 1.20 (m, CH_3 , 18H), 1.86 (m, CH_2 , 12H); ${}^{13}C{}^{1}H{}$ 7.85 (s, CH_3), 15.08 (br s, CH_2). Anal. Found (calcd) for $C_{12}H_{30}F_2P_2Pt$: C, 30.75 (30.71); H, 6.71 (6.44).

2c: ³¹P{¹H} 34.87 (t, $J_{FP} = 11.2$ Hz, $J_{PtP} = 2822.4$ Hz); ¹⁹F-{¹H} -455.90 (t, $J_{PtF} = 973.6$ Hz). FAB-MS M⁺ (M⁺ calcd for $C_{18}H_{42}F_2P_2Pt$): m/z 553 (m/z 553).

Table 2. Crystal Structure Information for Complexes 7a and 2a

	7a	2a
empirical formula	$C_{48}H_{40}F_2P_2Pt$	$C_{36}H_{30}F_2P_2Pt$
fw	911.83	757.63
temp (K)	110(2)	110(2)
wavelength (å)	0.710 73	0.710 73
radiatn type	Μο Κα	Μο Κα
cryst system	monoclinic	monoclinic
space group	C2/c	$P2_{1}/c$
unit cell dimens		
a (Å)	20.5030(3)	9.7590(2)
<i>b</i> (Å)	9.85000(10)	33.2970(9)
<i>c</i> (Å)	19.2560(3)	10.0480(2)
α (deg)	90.00	90.00
β (deg)	102.0220(5)	116.1981(13)
γ (deg)	90.00	90.00
cell vol (Å ³)	3803.55(9)	2929.64(12)
Z	4	4
calcd density (g m ⁻³)	1.592	1.718
cryst descriptn	colorless prisms	colorless prisms
cryst size (nm)	$0.20\times0.20\times0.15$	$0.20\times0.15\times0.15$
θ range for data collcn (deg)	2.45 - 27.86	2.34 - 28.24
index ranges	$0 \le h \le 26$	$0 \le h \le 12$
	$0 \le k \le 12$	$0 \le k \le 43$
	$EnDash25 \le l \le 24$	$EnDash13 \le l \le 12$
reflens colled/unique	4509/4288	6932/5681
refinement method	full-matrix F^2	full-matrix F^2
goodness-of-fit	1.054	1.026
data/restrains/params	4509/0/240	6932/0/370
$R_1(I \ge 2\sigma(I))$	0.0249	0.0450
wR_2 (all data)	0.0588^{a}	0.0736^{b}

^{*a*} $w = 1/[\sigma^2(F_0^2) + (0.0311P)^2 + 6.4988P]$, where $P = (F_0^2 + 2F_c^2)/3$. ^{*b*} $w = 1/[\sigma^2(F_0^2) + (0.0302P)^2 + 3.2056P]$, where $P = (F_0^2 + 2F_c^2)/3$.

Observations of 3 and 3'. **3a**: A solution of **1a** (0.02 mmol) in C_6H_6 (2 mL) was treated with AgF (0.03 mmol). The resulting suspension was stirred vigorously for 15 h. Further stirring led to the corresponding difluoride complex. The C_6H_6 was concentrated, and 3 mL of hexane was added resulting in product precipitation as a yellow powder (95% pure by NMR). ³¹P{¹H}: 13.61 (d, $J_{FP} = 19.1$ Hz, $J_{PtP} = 2747.1$ Hz). ¹⁹F{¹H}: -310.38 (t, $J_{PtF} = 543.1$ Hz). Addition of 1 equiv of (CH₃)₃SiI to a solution of **2a** in CH₂-Cl₂ or NMP resulted in the formation of **3'**, together with **1a** and the unreacted **2a**. **3'**: ³¹P{¹H} 11.88 (overlapped), 1.95 (dd, $J_{PaPb} = 13.8$ Hz, $J_{F(trans)Pb} = 181.9$ Hz, $J_{PtF} = 68.8$ Hz).

3b: A solution of **1b** (0.02 mmol) in CH₂Cl₂ (2 mL) was treated with AgF (0.02 mmol). The resulting suspension was vigorously stirred for 30 min resulting in a mixture of **2b** (30%) and **3b** (70%). ³¹P{¹H}: 12.07 (d, $J_{FP} = 18.6$ Hz, $J_{PtP} = 2473.8$ Hz). ¹⁹F{¹H}: -335.20 (t, $J_{PtF} = 494.4$ Hz). Warming this mixture in NMP at 45 °C for 5 h showed complete conversion of **3b** into the **3'**. ³¹P{¹H}: 16.93 (m, $J_{PtPa} = 3501.8$ Hz), -1.47 (dd, $J_{PtPb} = 4469.9$ Hz, $J_{PaPb} = 14.9$ Hz, $J_{F(trans)Pb} = 166.9$ Hz). ¹⁹F{¹H}: -248.10 (dd, $J_{F(cis)P} = 22.3$ Hz). **3'** was also observed in the reaction mixture upon addition of 1 equiv of (CH₃)₃SiI to a solution of **2b** in CH₂Cl₂ or NMP.

3c: A solution of **1c** (0.03 mmol) in CH₂Cl₂ (2 mL) was treated with AgF (0.06 mmol). The resulting suspension was stirred vigorously for 4 h and filtered. The CH₂Cl₂ solution was concentrated, and 3 mL of hexane was added resulting in the product precipitating as a yellow powder (95% pure by NMR). ³¹P{¹H}: 31.09 (d, $J_{\text{PF}} = 12.6$ Hz, $J_{\text{PtP}} = 2485.3$ Hz). ¹⁹F{¹H}: -329.68 (t, $J_{\text{PtF}} = 520.6$ Hz). ¹H NMR: 1.38 (m, CH₃, 36H), 2.88 (m, C-H, 6H). FAB-MS M⁺ (M⁺ calcd for C₁₈H₄₂FIPt): m/z 661 (m/z 661).

Synthesis of 7a–d. In a typical procedure, a cold (-30 °C) freshly prepared solution of XeF₂ (0.034 mmol in 1 mL) was quickly added to a solution of 1 (0.034 mmol) in CH₂Cl₂ (1 mL)

at -30 °C. The reaction mixture was left at this temperature for 10 min and then slowly warmed to room temperature. The ³¹P-{¹H} NMR spectrum showed the disappearance of the starting material and formation of the corresponding difluoride complex. The CH₂Cl₂ was concentrated, and 3 mL of hexane was added resulting in the product precipitating as white powder in high yields (92–97%). **7d** was too soluble in hexane to be isolated by precipitation and purified. The XeF₂ solution must be reacted within 15–30 min of preparation to avoid the formation of side products.

7a: ${}^{31}P{}^{1}H{}$ 8.30 (t, $J_{FP} = 23.6 \text{ Hz}$, $J_{PtP} = 2130.4 \text{ Hz}$); ${}^{19}F{}^{1}H{}$ -252.49 (br s, 2F) which appears as triplet in NMP ($J_{PtF} = 104.2$ Hz); ${}^{1}H$ 6.32 (m, Ar-*H*), 6.73 (m, Ar-*H*), 6.77-7.74 (m, Ar-*H*). Anal. Found (calcd) for C₄₈H₄₀F₂P₂Pt: C, 62.20 (63.20); H, 4.63 (4.42).

7b: ${}^{31}P{}^{1}H{}$ 8.32 (t, $J_{FP} = 21.5$ Hz, $J_{PP} = 2070.4$ Hz); ${}^{19}F{}^{1}H{}$ -255.22 (br s, 2F) which appears as triplet in NMP ($J_{PtF} = 122.3$ Hz), -119.83 (s, Ar-*F*, 2F); ${}^{1}H{}$ 6.14 (br t, J = 8.7 Hz, Ar-*H*, 4H), 6.89 (br s, 4H), 7.04–7.43 (m, 30H); ${}^{13}C{}^{1}H{}$ 112.73 (m, Pt–*Ar*), 126.43 (m, Ar), 128.17 (t, J = 5.5 Hz, Ar), 131.02 (s, Ar), 134.84 (m, Ar), 135.55 (br s, Ar), 137.21 (br s, Ar), 161.10 (br d, F-*Ar*, $J_{F-C} = 242.2$ Hz). Anal. Found (calcd) for C₄₈H₃₈F₄P₂Pt: C, 61.63 (60.82); H, 4.39 (4.04).

7c: ${}^{31}P{}^{1}H{}$ 7.03 (t, $J_{FP} = 21.6 \text{ Hz}$, $J_{PtP} = 1877.7 \text{ Hz}$); ${}^{19}F{}^{1}H{}$ -270.89 (br-s, Pt-*F*, 2F) which appears as triplet in NMP ($J_{PtF} =$ 104.3 Hz), -119.71 (s, Ar-*F*, 2F); ${}^{1}H$ NMR 0.79 (m, CH₃, 18H), 1.68 (m, CH₂, 12H), 6.91 (br t, J = 8.6 Hz, Ar-*H*, 4H), 7.76 (br s, Ar-*H*, 4H); ${}^{13}C{}^{1}H{}$ 7.66 (s, CH₃), 12.48 (m, CH₂), 114.57 (m, Pt-*Ar*), 116.39 (m, Ar), 136.95 (br s, Ar), 162.24 (d, F-*C*, $J_{F-C} =$ 242.6 Hz). Anal. Found (calcd) for C₂₄H₃₈F₄P₂Pt·0.2CH₂Cl₂: C, 42.84 (42.61); H, 5.73 (5.66).

7d: ${}^{31}P{}^{1}H{}$ 14.27 (t, $J_{FP} = 17.8$ Hz, $J_{PtP} = 1762.5$ Hz); ${}^{19}F{}^{1}H{}$ -261.03 (br s, Pt-*F*, 2F), -120.74 (s, Ar-*F*, 2F).

Synthesis of 8b,c. A solution of 0.02 mmol of **7b,c** in 1 mL of CH₂Cl₂ was treated with 2 equiv of $(CH_3)_3$ SiCl. The ³¹P{¹H} and ¹⁹F{¹H} NMR spectra indicated the disappearance of the starting material and formation of the corresponding dichloride complex. The CH₂Cl₂ was concentrated, and 3 mL of hexane was added resulting in product precipitation as a white powder (90–94% isolated yields).

8a: ${}^{31}P{}^{1}H{}$ 1.94 (s, $J_{PtP} = 2014.7$ Hz); ${}^{1}H$ NMR 6.33–7.74 (m, Ar-*H*); ${}^{13}C{}^{1}H{}$ 114.53 (m, Pt–*Ar*), 127.56 (br s, *Ar*), 128.28 (m, *Ar*), 129.31 (br s, *Ar*), 130.94 (br s, *Ar*) 134.83 (br s, *Ar*), 135.29 (m, *Ar*) 139.49 (br s, *Ar*).

8b: ${}^{31}P{}^{1}H{}$ 1.59 (s, $J_{PtP} = 1966.1$ Hz); ${}^{19}F{}^{1}H{}$ -121.03 (s, Ar-*F*, 2F); ${}^{1}H$ NMR 6.15 (br s, Ar-*H*, 4H), 7.00-7.50 (m, Ar-*H*, 34H); ${}^{13}C{}^{1}H{}$ 112.79 (m, Pt-*Ar*), 127.65 (t, J = 5.5 Hz, *Ar*), 128.03 (m, *Ar*), 130.76 (br s, *Ar*), 134.99 (br m, *Ar*) 135.85 (br s, *Ar*), 140.19 (br s, *Ar*). Anal. Found (calcd) for C₄₈H₃₈Cl₂F₂P₂Pt: C, 58.45 (58.78); H, 4.19 (3.91).

8c: ${}^{31}P{}^{1}H{} -3.91$ (s, $J_{PtP} = 1784.1$ Hz); ${}^{19}F{}^{1}H{} -120.33$ (s, Ar-F, 2F); ${}^{1}H$ NMR 0.94 (m, CH₃, 18H), 1.98 (m, CH₂, 12H), 6.75 (br t, J = 8.5 Hz, Ar-H, 4H), 7.24 (br s, Ar-H, 4H); ${}^{13}C{}^{1}H{} 8.54$ (s, CH₃), 14.24 (m, CH₂), 114.26 (m, Pt-Ar), 122.65 (br s, Ar), 138.87 (br s, Ar), 161.41 (d, F-Ar, $J_{FC} = 244.5$ Hz). Anal. Found (calcd) for $C_{24}H_{38}Cl_2F_2P_2Pt$: C, 41.90 (41.63); H, 5.65 (5.53).

Observations of 9b,c. To a solution of **7b,c** in NMP or CH_2Cl_2 (1 mL) was added 1 equiv of $(CH_3)_3SiCl$. Complexes **9b,c** were observed in the mixture with **8b,c** and unreacted **7b,c**.

9b (NMP): ${}^{31}P{}^{1}H{}$ 3.39 (d, $J_{FP} = 19.9$ Hz, $J_{PtP} = 1939.0$ Hz); ${}^{19}F{}^{1}H{} -280.31$ (m, Pt-*F*, 1F), -121.93 (s, Ar-*F*, 1F), 121.86 (s, Ar-*F*, 1F).

9c (CH₂Cl₂): ${}^{31}P{}^{1}H{}$ 0.77 (d, $J_{FP} = 22.2$ Hz, $J_{PtP} = 1832.3$ Hz); ${}^{19}F{}^{1}H{} -281.92$ (br s, Pt-*F*, 1F), -120.99 (s, Ar-*F*, 1F), 120.22 (s, Ar-*F*, 1F).

Synthesis of 10b,c. To a 9:1 toluene–NMP solution of 7b (20 mg, 0.02 mmol in 1 mL) was added 4 μ L (0.022 mmol) of (CH₃)₃-SiOTf. The ¹⁹F{¹H} NMR spectrum revealed the formation of 1 equiv of (CH₃)₃SiF and 10b. The latter was isolated as a white solid in 80% yield by concentration in a vacuum and addition of 3 mL of hexane. Under similar conditions, 10c was also prepared in solution; however, we could not isolate it in pure form.

10b: ³¹P{¹H} 4.27 (s, $J_{FP} = 18.8$ Hz, $J_{PtP} = 1987.4$ Hz); ¹⁹F-{¹H} -274.52 (m, Pt-*F*, 1F), which appears as triplet in NMP ($J_{PtF} = 97.0$ Hz), -118.70 (s, Ar-*F*, 1F), -118.04 (s, Ar-*F*, 1F), -80.36 (s, CF₃, 3F); ¹H NMR 7.06 (br s, Ar-*H*, 4H), 7.14 (br t, *J* = 7.4 Hz Ar-*H*, 4H), 7.20-7.62 (m, Ar-*H*, 30H); FAB-MS M⁺ (M⁺ calcd for C₄₉H₃₈F₆O₃SPt): m/z 1075 (m/z 1075).

10c: ³¹P{¹H} 12.87 (d, $J_{FP} = 20.2 \text{ Hz}$, $J_{PtP} = 1808.5 \text{ Hz}$); ¹⁹F-{¹H} -263.81 (t, Pt-*F*, 1F, $J_{PtF} = 75.9 \text{ Hz}$ in toluene), -117.69 (s, Ar-*F*, 1F), -116.93 (s, Ar-*F*, 1F), -77.45 (br s, C*F*₃, 3F); ¹H NMR 0.55 (m, C*H*₃, 18H), 1.69 (br m, C*H*₂, 12H), 6.68 (br t, Ar-*H*, 4H, $J_{HH} = 8.4 \text{ Hz}$), 6.79–7.61 (m, Ar-*H*, 4H); FAB-MS M⁺ (M⁺ calcd for C₂₅H₃₈F₆O₃SPt): *m/z* 789 (*m/z* 789).

Reductive Elimination in 8b. An NMP solution of **8b** (20 mg,0.02 mmol) in a sealed NMR tube was warmed at 45 °C in an oil bath, and the reaction progress was monitored by ¹⁹F NMR (C_6F_6 as a reference). After 5 h, the complete disappearance of **8b** was observed with the concomitant formation of 4,4-difluorobiphenyl. The ³¹P NMR spectrum showed the formation of (Ph₃P)₂PtCl₂, **4a**, as the only product.

Exchange Reaction with (*p*-tolyl)₃P. To a solution of **8b** in NMP (10 mg, 0.01 mmol) was added 30 mg (10 equiv) of (*p*-tolyl)₃P, and the mixture was warmed at 45 °C for 5 h in an NMR tube. The ³¹P and ¹⁹F NMR spectra showed the disappearance of **8b** and formation of the new complex ((*p*-tolyl)₃P)₂Pt(*p*-FC₆H₄)₂-Cl₂. An equivalent amount of free PPh₃ was also observed in the ³¹P NMR spectrum: ³¹P{¹H} 0.93 (s, $J_{PtP} = 1952.4$ Hz); ¹⁹F{¹H} -120.90 (s, Ar-*F*, 2F).

Acknowledgment. This work was supported by a Tel Aviv University Internal Grant. A.V. is the incumbent of the Raymond and Beverly Sackler Career Development Chair and the Yigal Alon Fellow. The authors thank Prof. David Milstein for valuable discussions and Prof. Yoram Cohen for performing the gNMR calculations.

Supporting Information Available: X-ray crystallographic files (CIF) for 2a and 7a and NMR spectra of complexes 2a and 7a. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0488177